Tag: 上海龙凤shlf 66

Get Big Alfonso Soriano Ties RBI Record as He

Alfonso Soriano, who was traded to New York from the Chicago Cubs last month, is proving to be a great acquisition for the Yankees.The outfielder has had 18 RBIs in the last four games, which tied the MLB record for most RBIs in a four-game span. In his recent game against the Boston Red Sox, Soriano hit three hits and drove in four more runs, which added to his RBI total to lead the Yankees over the Red Sox 10-3.“Here we go again,” Soriano said to the media after the game. “I think the motivation [is] going back to the Yankees, trying to help the team win.”Soriano is leading the charge as the Yankees have won the last five out of six games. The recent wins put the Yankees 7½ games back in the division and 5½ back in the AL wild-card race.“You’re looking at a powerful right-handed hitter in the middle of the lineup who caught fire since he came over,” Red Sox manager John Farrell said. “It’s had an enormous [impact] on their offense.” read more


September 30, 2019 0

Walking crystals may lead to new field of crystal robotics

first_imgResearchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can “walk” inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion such as rolling, flipping, bending, twisting, and jumping. In the future, these moving crystals may open the doors to the development of crystal-based robots. Play Credit: Taniguchi et al. Crystals with other dimensions exhibit bending and flipping under temperature changes. In experiments, repeated heating and cooling cycles caused these crystals to quickly roll across a surface, attaining speeds of 16 mm/second. This was approximately 20,000 times faster than the walking crystals, which crawled along at just 3 mm/hour.As the researchers explain, the asymmetrical shapes of the crystals is the driving force of both types of locomotion. In particular, the walking crystals have a thickness gradient while the rolling crystals have a width gradient. Both varieties of crystal experience a phase transition at a critical temperature, and due to the asymmetry, this results in a shape change that is more pronounced at one end of the crystal than at the other. Journal information: Nature Communications PausePlay% buffered00:0000:00UnmuteMuteDisable captionsEnable captionsSettingsCaptionsDisabledQuality0SpeedNormalCaptionsGo back to previous menuQualityGo back to previous menuSpeedGo back to previous menu0.5×0.75×Normal1.25×1.5×1.75×2×Exit fullscreenEnter fullscreen Along with previous research that has demonstrated crystal motion in other types of crystals, the new results suggest that crystals appear to be promising candidates for robotics. In general, materials that respond to external stimuli, such as temperature changes, have potential applications as sensors, switches, and in a wide variety of other areas. The researchers, led by Hideko Koshima at Waseda University in Tokyo, Japan, have published a paper on walking and rolling crystals in a recent issue of Nature Communications.”We believe that this finding opens the doors to a new field of crystal robotics,” Koshima told Phys.org. “Currently, robots made from metals are rigid and heavy, making them unsuitable for daily interaction with humans. Our goal is to make symbiotic soft robots using mechanical crystals.”In their work, the researchers investigated asymmetric crystals derived from chiral azobenzene. In experiments, they showed that exposing the crystals to alternating hot and cold temperatures (changing between 120° and 160° C over the course of approximately 2 minutes) causes changes in the crystals’ shapes.Depending on their dimensions, some of the crystals repeatedly bend and straighten. Over repeated heating and cooling cycles, these shape changes translate into the mechanical motion of inchworm-like walking. Citation: Walking crystals may lead to new field of crystal robotics (2018, February 23) retrieved 18 August 2019 from https://phys.org/news/2018-02-crystals-field-crystal-robotics.html Image and illustration of crystals that roll under alternating temperatures. Credit: Taniguchi et al.center_img More information: Takuya Taniguchi et al. “Walking and rolling of crystals induced thermally by phase transition.” Nature Communications. DOI: 10.1038/s41467-017-02549-2 Images of crystals that “walk” like an inchworm by bending and straightening under alternating temperatures. Credit: Taniguchi et al. © 2018 Phys.org Explore further Robotic crystals that walk n’ roll This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more


August 31, 2019 0